I just discovered something which I am unable to prove. Any natural number \(n\) can be represented as a multiple of 9 + Sum of the digits of \(n\).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I just discovered something which I am unable to prove. Any natural number \(n\) can be represented as a multiple of 9 + Sum of the digits of \(n\).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

For example: 9 = 0 + 9 40 = 36 + 4 + 0 120 = 117 + 2 + 0
I got you but 120 = 117 + 1 + 2 + 0
Oops.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

45 = 45 + 4 + 5 ???
No, 45 = 36 + 4 + 5
Kidding: 45 = 36 + 4 + 5
Do you use induction to prove?
what about the numbers below 9?
8 = 0 + 8
3 = 9(0) + 3
0 is a multiple of 9. 9 * 0 = 0
isnt that cheating lol? everything is a multiple of zero then
But I need to prove this thing. How do you do that?
98 = 90 + 9 + 8 ???
that's 107?
more like 81 + 9 + 8
98 = 81 + 9 + 8
How do you prove it?
\[\text{decimal} \]
Can you use Mathematical Induction to prove that? lol
I have no idea.
He is saying natural number @UnkleRhaukus
I don't think so Parth; you can't prove that with MI, not certain though.
I guess, Mukushla will give something to cheer upon..
i have a feeling it has something to do with mods
our number system is to base 10
sorry i lost my connection if n is a m+1 digit number \( n=(a_{m}a_{m-1}....a_{1}a_{0})=10^m a_{m}+10^{m-1} a_{m-1}+...+10a_{1}+a_{0} \) now \( n-(a_{m}+a_{m-1}+...+a_{1}+a_{0})=(10^m -1)a_{m}+(10^{m-1}-1)a_{m-1}+...+9a_{1}=9k \)
120=117+1+2+0
I got a proof, finally. \( \color{Black}{\Rightarrow \bar{abc} = 100a + 10a + c }\) \( \color{Black}{\Rightarrow 99a + a + 9b + b + c}\) \( \color{Black}{\Rightarrow 9(11a + b) + (a + b + c)}\) 11a + b is a multiple of 9.
Is my proof good enough?
10b*
@ParthKohli u did my work for m=2
\((10^k - 1)\) will be multiple of 9 always..
@waterineyes thats right
My guess is right: Mukushla has given something to cheer upon..
Yeah.

Not the answer you are looking for?

Search for more explanations.

Ask your own question