anonymous
  • anonymous
How would you evaluate this? \[\large \sum_{n=3}^{\infty} \frac{4}{n^2-1}\] o_O I'm thinking there's some trick here I'm not seeing...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
KingGeorge
  • KingGeorge
My recommendation would be\[\sum_{n=3}^\infty \frac{4}{n^2-1}=\sum_{n=3}^\infty \frac{4}{(n+1)(n-1)}\]and then apply partial fractions.
anonymous
  • anonymous
4 = A(n-1) + B(n+1) 4 = An - A + Bn + B A + B = 0 4 = -A + B A + (A+4) = 0 2A = -4 A = -2 B = 2 Now what?
anonymous
  • anonymous
\[\sum_{n=3}^{\infty} \frac{-2}{n+1} + \sum_{n=3}^{\infty} \frac{2}{n-1}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

KingGeorge
  • KingGeorge
\[\sum_{n=3}^\infty \left(\frac{2}{n-1}-\frac{2}{n+1}\right)\]seems like a telescoping series to me.
anonymous
  • anonymous
The kind where the middle terms keep cancelling each other out right? Yeah I was just introduced to that today :-D You're saying then all you have left are the first and last terms. Hmm, but how do I manipulate it into that form? I guess it the precise question here. Good call on the partial fractions btw, I didn't see that as an option at first glance
KingGeorge
  • KingGeorge
It's already in that form. Just write out the first few terms \[\left(\frac{2}{3-1}-\frac{2}{3+1}\right)+\left(\frac{2}{4-1}-\frac{2}{4+1}\right)+\left(\frac{2}{5-1}-\frac{2}{5+1}\right)+...\]Simplify things a bit, and everything will cancel, and you'll be left with some value and nothing afterwards.
anonymous
  • anonymous
Ah ok, that makes more sense because http://www.wolframalpha.com/input/?i=telescoping+series&lk=4 wasn't helping :P
KingGeorge
  • KingGeorge
In this case, you don't even have to worry about anything at the end since \[\lim_{n\to\infty}\frac{4}{n^2-1}=0\]So the end term would be 0.
anonymous
  • anonymous
+1000 Kudos! So if we can check if the limit goes to zero first thing off the bat then we're able to confirm convergence? Does that mean the evaluation of the series is also zero?
anonymous
  • anonymous
Oh wait I think I may have misunderstood, the first few that don't cancel out are what will be left
anonymous
  • anonymous
Yes?
KingGeorge
  • KingGeorge
If the limit goes to 0 it doesn't guarantee convergence of the series. For example, \[\sum_{n=1}^\infty\frac{1}{n}\]does not converge. But the mere fact that it's telescoping with a finite number of non-zero terms means that it converges. And yes, the first few terms that don't cancel out will be the overall sum.
anonymous
  • anonymous
Wonderful information, I'm evaluating it by hand at the moment. I'll post what I've found when I'm done. :-)
anonymous
  • anonymous
I got \(\large\frac{5}{3}\) :-)
KingGeorge
  • KingGeorge
That looks right.
anonymous
  • anonymous
1 + 2/3 = 5/3
anonymous
  • anonymous
Ty for helping out on this one :-D
KingGeorge
  • KingGeorge
You're welcome.
klimenkov
  • klimenkov
I'm really sorry to interrupt you. But it is very interesting fact, that \[\sum_{n=3}^{\infty} \frac{4}{n^2-1}=\lim_{n \rightarrow \infty}\left( \frac 53 -\left( \frac{2}{n}+\frac{2}{n-1}\right) \right) \]I enjoy this!

Looking for something else?

Not the answer you are looking for? Search for more explanations.