klimenkov
  • klimenkov
Tutorial. How to solve the quadratic equation.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
klimenkov
  • klimenkov
Any number in this article is REAL. Definition: The quadratic equation is an expression:\[ax^2+bx+c=0\]where \(a,b,c \) are any numbers, but \(a\ne0\). 1. There are 2 solutions of this equation in case if \(b^2-4ac>0\) and they can be found in this way:\[x_1=\frac{-b-\sqrt{b^2-4ac}}{2a}, \ x_2=\frac{-b+\sqrt{b^2-4ac}}{2a}\]2. There is 1 solution of this equation in case if \(b^2-4ac=0\) and it can be found in this way:\[x=-\frac{b}{2a}\]3. There is no solution of this equation in case if \(b^2-4ac<0\). Proof: Divide both parts of the equation by \(a, \ a\ne0\):\[x^2+\frac bax+\frac ca=0\]Next we write \(\frac ba=2\cdot\frac b{2a}\). And then add and subtract \(\frac{b^2}{4a^2}\) in the left part of the equation:\[x^2+2\cdot\frac b{2a}x+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac ca=0\]Now use the formula \((a+b)^2=a^2+2ab+b^2\) to the first 3 addends in the left part of the equation. Sum 2 others \(-\frac{b^2}{4a^2}+\frac ca=-\frac{b^2-4ac}{4a^2}\) and place them into the right part of the equation: \[\left( x+\frac b{2a}\right)^2=\frac{b^2-4ac}{4a^2}\]\(4a^2\) is always positive. So, the quantity of the roots depends only on the sign of the radicand. 1. If \(b^2-4ac>0\) we can take a square root of the both parts of the equation and then add \(-\frac b{2a}\) to the both parts and get: \[x=\sqrt{\frac{b^2-4ac}{4a^2}}-\frac b{2a}=-\frac {b\pm\sqrt{b^2-4ac}}{2a}\]The first solution is for \(-\) sign, the second is for \(+\). 2. If \(b^2-4ac=0\) we have an equation \[\left( x+\frac b{2a}\right)^2=0\]And have only 1 solution: \(x=-\frac b{2a}\). 3. If \(b^2-4ac<0\), we cant take a square root to find \(x\), because we cant find a square root of the negative number. In this case there is no solution.
klimenkov
  • klimenkov
Example: 1. \(x^2-3x+2=0\) Notice that \(a=1, \ b=-3, \ c=2\) Check \[b^2-4ac=(-3)^2-4\cdot1\cdot2=9-8=1>0\] So, we have 2 solutions. And use the formula: \[x_1=\frac{-(-3)-\sqrt{(-3)^2-4\cdot1\cdot2}}{2\cdot1}=\frac{3-\sqrt{1}}{2}=\frac{3-1}{2}=\frac{2}{2}=1\]\[x_2=\frac{-(-3)+\sqrt{(-3)^2-4\cdot1\cdot2}}{2\cdot1}=\frac{3+\sqrt{1}}{2}=\frac{3+1}{2}=\frac{4}{2}=2\] So, the solution is \(x_1=1, \ x_2=2\). 2. \(2x^2+x+1=0\) Notice that \(a=2, \ b=1, \ c=1\) Check \[b^2-4ac=1^2-4\cdot2\cdot1=1-8=-7<0\]So, we dont have real solution. 3. \(x^2+10x+25=0\) Notice that \(a=1, \ b=10, \ c=25\) Check \[b^2-4ac=10^2-4\cdot1\cdot25=100-100=0\]So, we have 1 solution: \[x=-\frac b{2a}=-\frac{10}{2\cdot1}=-5\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathslover
  • mathslover
these are some .. tutorials made by me of quadratic equation ... . well must say nice one
mathslover
  • mathslover
So u proved in this tutorial that a quadratic eqn has 2 roots (max.) right ?
klimenkov
  • klimenkov
I think this follows from the properties of the square root. If the statement: "Equation \(x^2=a\) has no more than 2 roots for any real \(a\)" is proved, your statement will follow from this one. I saw you proof of this statement. It is good.
mathslover
  • mathslover
thanks ..

Looking for something else?

Not the answer you are looking for? Search for more explanations.