Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

sin A ----- = cos A (known) ................(sin 30)/tan 30 ? tan A

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
cos 30=root(3)/2
yeah ,,, which is equal to cos 30
but ,,,,, sin 0/tan 0 is not equal to cos 0 why so?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

  • hba
what do we have to find
|dw:1342799783750:dw|
|dw:1342799803525:dw|
  • hba
@DHASHNI it is equal
|dw:1342799811401:dw|
\(\sin \div \cos = \tan\)
\(\sin \div \tan \ne \cos\)
@hba Ohh ! pleaase ! 0/0 =1 :) !!!!!!
\( \color{Black}{\Rightarrow \tan 0 = \Large {\sin 0 \over \cos0} \normalsize = {0 \over1} = 0}\)
I believe that you are mistaken. sinx/tanx is not equal to cosx.
why its a property
The number '0' spoils it all.
this property is correct since tan(A)\[\tan(A) \neq 0\]
tan 0 is 0
yeaah !
I see that all the exceptions come from the number \(0\). I like this number. You can do anything from it(prove 2 = 1) ;)
yeah
I believe that we may just conclude that \(\Large {\sin x \over \tan x} \normalsize = \cos x , x \ne 0 \)
but this is a property right?
It is.
\( \color{Black}{\theta \ne 0 \Rightarrow {\Large {\sin \theta \over \tan \theta}} = \cos \theta}\)
That was mathematical language.
@ParthKohli Come on !( 2=1) and yes The property is correct ! for \[x \neq k \pi \] \[x \neq \pi/2\]
sorry \[x \neq \pi/2 +k \pi\] for the second one !

Not the answer you are looking for?

Search for more explanations.

Ask your own question