anonymous
  • anonymous
Simplify logarithms to rewrite the following expressions in terms of u and t. Let ln x=t and ln y = u. [(ln x)^3 - ln (x^4)] / (lnx/e^2)ln(xe^2) This problems is stumping me!!!! I don't know what to do, since some lnx are inside parentheses and others aren't.
OpenStudy Feedback
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
well i don't know where is 'y' in the equation, but anyway the solution of this equation : [(ln x)^3 - ln(x^4)] /[ln (x/e^2)ln(xe^2)] = [(ln x)^3 - 4ln(x)] / [ ( ln(x) - ln(e^2)] [ ln(x) + ln(e^2) ] ; and now ln(x) =t; t [ t^2 -4 ] / [( t -2ln(e)] [t + 2ln(e)] = t[ (t - 2) (t +2 )] / [ ( t - 2 ) ( t + 2 ) ] = t = ln(x)
anonymous
  • anonymous
Thank you!!! This is great :) Yes, I didn't mean to add the Y there. Just meant to have t.
anonymous
  • anonymous
you are welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.