anonymous
  • anonymous
This exercise is in a section about using trig substitution to integrate. I can use trig sub, but I'm just not seeing what initial substitution to use so I can apply trig sub. Can anyone give me a hint? I don't need (don't want) it solve to the end. At least not yet.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
See attached
1 Attachment
anonymous
  • anonymous
|dw:1342935015183:dw|
anonymous
  • anonymous
woops cos theta/4 = 1/ hypotenuse, not just the hypotenuse

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
just a guess with what is out there
anonymous
  • anonymous
|dw:1342935652408:dw| actually this looks better
anonymous
  • anonymous
then |dw:1342935809458:dw|
dumbcow
  • dumbcow
hint: use trig identity \[\sec^{2} = 1+\tan^{2}\] Factor out the 16 from radical in denominator \[\sqrt{16+x^{6}} = \sqrt{16}\sqrt{1+\frac{x^{6}}{16}}\] Now make the substitution \[x^{6} = 16\tan^{2}\] hope that helps

Looking for something else?

Not the answer you are looking for? Search for more explanations.