anonymous
  • anonymous
Calc help, (tan(X/2)^(-1)) - 1/(2(x^(2)+4))
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
finding derivative please help with steps
anonymous
  • anonymous
you mean, (arctan(x/2) - 1)/(2(x^2 +4))
IsTim
  • IsTim
Just remember, this is only complex calculus using simple rules.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
um yes arctan but the -1 is part of the x^(2)+4
klimenkov
  • klimenkov
\((\tan \frac x 2)^{-1}-\frac{1}{2(x^2+4)}\)
anonymous
  • anonymous
^correct
anonymous
  • anonymous
firt put tann x/2 as cot x/2 and diffetentiate it u wil get -1/2cosec^2x/2
anonymous
  • anonymous
becoz tan x/2 is to the power of -1 hence after taking its reciprocal u get cot x/2
anonymous
  • anonymous
by usng the product rule*
anonymous
  • anonymous
now differentiate -1/2(x^2+4) you will get -xlog (x^2+4)
anonymous
  • anonymous
hence your total answer is -1/2cosec^2x/2-xlog (x^2+4)
anonymous
  • anonymous
if you have any other problem you can ask

Looking for something else?

Not the answer you are looking for? Search for more explanations.