how to get for the derivative of cos^2 (x)- sin^2 (x)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

how to get for the derivative of cos^2 (x)- sin^2 (x)?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

a la Chain Rule! :-D Do you know it?
If you want you can always replace cos^2(x) with 1-sin^2(x), if that's easier for you to derive.
i didn't know that..

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

then you have 1-2sin^2(x) for your new problem
it's still what @agentx5 suggested though,just an algebraic manipulation.
2cosx(-sinx)-2sinx(cosx) -2cosxsinx-2sinxcosx -4sinxcosx
Tada! \(\large \frac{d}{dx}(\cos^2(x)-\sin^2(x))\) \(\large \frac{d}{dx}(\cos^2(x))-\frac{d}{dx}(\sin^2(x))\) \(\large 2 cos(x) (\frac{d}{dx}(cos(x)))-2 sin(x) (\frac{d}{dx}(sin(x)))\) \(\large -2 \cos(x) \sin(x) -2 \sin(x) \cos(x)\) \(\large -4 \sin(x) \cos(x)\)
See how the \(\frac{d}{dx}\) is carried from the outer function into the inner? \(\large \frac{d}{dx} (x^3)^2 = 2 (x^3)^{2-1} \cdot \frac{d}{dx} x^3 = 2 (x^3)^{1} \cdot 3x^{3-1} \frac{d}{dx} x = 6x^5 \ \ \ \ dx\)
and...voila!! thanks! I'm a fan!!
It's the same exact thing, just with sine & cosine instead of exponents or whatever. Nested functions within functions, chain rule. Make sense?
In my mind, I treat the derivative as an operand, like a special form of multiplication/division or what-have-you
Granted that's not TECHNICALLY what it is, but you can "distribute" across added/subtracted terms and it applies into nested functions with the chain rule... Chain Rule: for: \[u^n \] then: \[(n*u^{n-1})*\frac{d}{du}u\] Do the power rule, then take the derivative of what's inside the "shell"/"layer"/"whatever"
Learn it well @unkabogable ! It's kind of critical in all Calculus levels (and it only get more complex).

Not the answer you are looking for?

Search for more explanations.

Ask your own question