A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing

This Question is Closed

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0thankyouu... how about 2^1? isit 1/2? or is it 1/2..

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0howabout 2^0?? sorry... this is the lastone.,.

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0is it \(2^2\) or \((2)^{2}\) ??/ @punk0129

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0now imtalkin about 2^0 .

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0If this one you got 1 then how previous one is 1/4 @Hashir

Hashir
 2 years ago
Best ResponseYou've already chosen the best response.1he should make the question more clear !!

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0Tell me @punk0129 What is the exact question??

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0huh????! my first question was2^2, but now i'm askin whatis 2^0

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0In question brackets are not given you yourself assume the brackets I guess... @Hashir

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0I am asking the same @punk0129

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0no 4 da brackets i did it for exponents

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0sorry if that was confusnign

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0If your question is: \(2^{2}\) the you got: \[\large \implies 2^{2} = \frac{1}{2^2} \implies \frac{1}{4}\]

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0so is it not 1/4=what Hashir said??!

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0And if your question is : \((2)^{2}\) then you will get: \[\large (2)^{2} = \frac{1}{2^2} \implies \frac{1}{4}\]

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0firstly clarify the question..

punk0129
 2 years ago
Best ResponseYou've already chosen the best response.0OHHH i get it!! its witout the ' ( )'s thank you:P

waterineyes
 2 years ago
Best ResponseYou've already chosen the best response.0Remember anything raised to the power 0 is 1.. except the base must not be 0.. So: \[\large 2^0 \implies (1) \implies 1\] And: \[\large (2)^0 \implies 1\]
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.