cwrw238
  • cwrw238
Differentiate sin(sin(sin x))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
cwrw238
  • cwrw238
i've done it by i want it checked
anonymous
  • anonymous
\[\frac{d}{dx}(\sin(\sin(\sin(x)) = \cos(\sin(\sin(x))) \times \cos(\sin(x)) \times \cos(x)\]
cwrw238
  • cwrw238
yup - thanx

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

cwrw238
  • cwrw238
you're pretty fast - it took me a while to figure that out
anonymous
  • anonymous
How??
cwrw238
  • cwrw238
i used the chain rule
anonymous
  • anonymous
Always remember: \[\frac{d}{dx}(f(x)) = \frac{d}{dx}(f(x)) \times \frac{d}{dx}(x)\]
cwrw238
  • cwrw238
- maybe its because i'm not too keen on calculus lol
anonymous
  • anonymous
So \[\frac{d}{dx}(\sin(\sin(\sin(x)) = \cos(\sin(\sin(x))) \times \frac{d}{dx}(\sin(\sin(x))\] \[\cos(\sin(\sin(x))) \times \frac{d}{dx}(\sin(\sin(x)) \implies \cos(\sin(\sin(x))) \times \cos(\sin(x)) \times \frac{d}{dx}(\sin(x))\]
anonymous
  • anonymous
\[\cos(\sin(\sin(x))) \times \cos(\sin(x)) \times \frac{d}{dx}(\sin(x)) = \cos(\sin(\sin(x))) \times \cos(\sin(x)) \times \cos(x) (1) \]
anonymous
  • anonymous
\[\cos(\sin(\sin(x))) \times \cos(\sin(x)) \times \cos(x) \times \frac{d}{dx}(x)\] \[\implies \cos(\sin(\sin(x))) \times \cos(\sin(x)) \times \cos(x)\]
anonymous
  • anonymous
One by one we have to take all the derivative..
cwrw238
  • cwrw238
yes - i think i just need some practice in these to speed me up
cwrw238
  • cwrw238
ty
anonymous
  • anonymous
You are quite intelligent I believe.. Just a little more practice will give you command over this..
anonymous
  • anonymous
Welcome dear..

Looking for something else?

Not the answer you are looking for? Search for more explanations.