anonymous
  • anonymous
I can't see the substitution I'm supposed to make. Any hints? See next for the exercise.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
cwrw238
  • cwrw238
try u = sqrt(2x)
anonymous
  • anonymous
I did |dw:1343307585147:dw||dw:1343307655512:dw| I'm supposed to be geting this into the form so I can find the formula in a integral table.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I did find this one, but it is making the integral more complicated:
1 Attachment
anonymous
  • anonymous
That is not getting me to one of those MC answers/
anonymous
  • anonymous
Now use Integration By parts..
anonymous
  • anonymous
\[\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}}\]
anonymous
  • anonymous
\[\int\limits u \cdot \sin^{-1}(u) du = \sin^{-1}(u) \cdot \frac{u^2}{2} - \int\limits( \frac{1}{\sqrt{1 - u^2}} \times \frac{u^2}{2}) du\] Try to solve for last part..
anonymous
  • anonymous
you can do it like this: \[ \frac{1}{\sqrt{1 - u^2}} \times u^2 = \frac{1 - u^2 + 1}{\sqrt{1 - u^2}} =\sqrt{1 - u^2} + \frac{1}{\sqrt{1 - u^2}}\] Use the following two Special Integral Formula: \[\int\limits \sqrt{a^2 - x^2}dx = \frac{1}{2}x \cdot \sqrt{a^2 - x^2} + \frac{1}{2}a^2 \cdot \sin^{-1} (\frac{x}{a}) + C\] \[\int\limits \frac{1}{\sqrt{a^2 - u^2}}dx = \sin^{-1}(\frac{x}{a}) + C\]
anonymous
  • anonymous
Sorry - will be there in between terms: \[\frac{1}{\sqrt{1 - u^2}} \times u^2 = \frac{1 - u^2 - 1}{\sqrt{1 - u^2}} =\sqrt{1 - u^2} - \frac{1}{\sqrt{1 - u^2}}\] By this your integration middle term will become positive: \[\int\limits\limits u \cdot \sin^{-1}(u) du = \sin^{-1}(u) \cdot \frac{u^2}{2} + \int\limits\limits( \frac{1}{\sqrt{1 - u^2}} \times \frac{-u^2}{2}) du\]
anonymous
  • anonymous
Thanks, I just flipped back in the textbook section and they provide an example in the form \[\int\limits xsin^{-1} x \] dx= that integral and then to use a the table again. Thank so much!
anonymous
  • anonymous
Welcome dear..

Looking for something else?

Not the answer you are looking for? Search for more explanations.