Prove that if n-2 is divisible by 4 then n^2 - 4 is divisible by 16.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Prove that if n-2 is divisible by 4 then n^2 - 4 is divisible by 16.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

For a given integer.
Say that n is 26 so 26-2=24 and 24 is divisible by 4. 26x 2-4=52-4=48 and 48 is divisible by 16
hehe I wish, sec

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I would do contradiction
\[\forall{n}\in \mathbb{Z} : 4|n-2 \rightarrow 16|n^2-4\] I believe that's the correct notation.
yeah
do you need to show for all n?
nm i c
I need to show the proof.
ok assume n-2= 4k for some k in Z then n = 4k+2 then n^2-4 = (4k+2)^2 - 4 = 16k^2 + 16k +4-4 = 16(k^2+k) since k^2+k is in Z 16|n^2-4
sorry direct proof was fast I think
Yeah, they wanted Direct Proof. so since n^2 - 4 = 16k the (k^2+k) in 16(k^2+k) doesn't matter, the rest match. that's what was confusing me.
yeah 16 | (16* any integer)
Thanks for the help.
np

Not the answer you are looking for?

Search for more explanations.

Ask your own question