Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

acb81887 Group Title

Problem Set 3: 2A-12d: Give the quadratic approximation for y=ln(cosx). I understand how the solution is -(1/2)x^2 (because L(ln(1+u))=u), but when I first attempted the problem, I did the following: y=ln(cosx) e^y=e^(ln(cosx)) e^y=cosx approximating, 1+y+(1/2)y^2=1-(1/2)x^2 y=-(1/2)x^2-(1/2)y^2 plugging in ln(cosx) for y, Q(y)=-(1/2)x^2-(1/2)(ln(cosx))^2 This solution seems to be a more accurate (although uglier-looking) approximation of y=ln(cosx) when x is near 0. Looking for insight as to if it is incorrect and if so, why?

  • one year ago
  • one year ago

  • This Question is Closed
  1. bhaweshwebmaster Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    actually the formula for quadratic approximation is : f(x) = f(0) + f ' (0) * x + f ''(0) (x^2)/2 For, y = ln (cos x) f(0) = 0 f ' (0)= 0 and, f '' (0)= -1 now, substitute to get , y = - 1/2 x^2

    • one year ago
  2. acb81887 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I should have mentioned that the question suggests that you solve the problem algebraically using quadratic approximation formulas for basic functions, for instance I used Q(e^x)=1+x+(1/2)x^2 and Q(cosx)=1-(1/2)x^2. edit: I know Q(y)=-(1/2)x^2-(1/2)(ln(cosx))^2 is the wrong answer, which is evident by using the actual quadratic approximation formula, but I don't see why I cannot also solve the problem algebraically using Q(e^x) and Q(cosx).

    • one year ago
  3. bhaweshwebmaster Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Okay. So remember that ln (x) = ln [1+(x-1)] Using quadratic approximation, ln [1+(x-1)]= (x-1) - (x-1)^2 /2 = 2x - x^2 /2 -3/2-----(1) so, ln (cos x) = ln [ 1+ ( cos x -1)] hence, ln (cos x) = 2cos x -1/2 cos^2 x -3/2 [using equation 1] = 2 (1 - x^2/2)- 1/2 ( 1- x^2 /2) ^2 - 3/2 [using approximation for cos x] = 2 - x^2 - 1/2 ( 1- x^2)- 3/2 [ we don't need to write terms involving higher powers of x than x^2] = 2- x^2 - 1/2- x^2 /2-3/2 = -1/2 x^2 In this, only the quadratic approximation formula for ln (1+x) and cos x are used.

    • one year ago
  4. kantochampion Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    The problem with your "Q(y)" approximation is that the term "(1/2)(ln(cosx))^2" is either higher than degree 2 or equal to 0 (depend on whether you choose to approximate ln(cosx) linearly or quadraticly). So, it will be negligible as you already learned from the lecture. Also, the fact that you involve "(1/2)(ln(cosx))^2" as part of your answer for the approximation of ln(cosx) is illogical because if Q(y) is correct, then it's like saying in order to approximate ln(cosx) you had to already know the value of (ln(cosx))^2.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.