anonymous
  • anonymous
It is said that electric flux is independent of the surface enclosing the charge. Even if we double the length and width of, say, a box, the electric flux would be the same. However, isn't it that as you increase the area of something, you also increase the flux? And when you increase the dimensions of a rect. prism, you also increase the area of each face. How come the flux does not change still?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I haven't looked at this in a while, but I am going to guess that it will make a difference whether you increase area of a single surface versus of an enclosed container. In a single surface, larger area means more area for flux in that direction, but net flux with a volume has vectors that cancel each other out? This is just a guess!
anonymous
  • anonymous
Thank you very much!! :)
anonymous
  • anonymous
according to my knowledge electric lines of forces crossing unit area is electric flux by increasing the area their is no effect on the electric lines of force crossing unit area..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Hyperphysics has a nice diagram, http://hyperphysics.phy-astr.gsu.edu/Hbase/electric/gaulaw.html#c3, and yes Vikas, you are correct, per unit area, it will not change. So perhaps the best way to imagine this is that a larger area will have a larger amount electric lines of force, but the flux per unit area will be constant.

Looking for something else?

Not the answer you are looking for? Search for more explanations.