Here's the question you clicked on:
GiggleSquid
One focus is at (5,-11.94). Find the other focus for the ellipse defined by this equation: (x-5)^2/1 + (y+4)^2/64=1
The ellipse is centered at 5,-4 The minor axis is 2a with a = 1 The major axis is 2b with b = sqrt(64) = 8. Have to look up for the foci again.
so the major axis is 2 x 8 or is it just 8, thanks for the help btw
The foci are at sqrt(b^2 - a^2) = 7.937, have to compute the offsets based on the origin.
I think the terminology is major axis = 2 x 8 semi-major axis = 8
study up :) http://en.wikipedia.org/wiki/Ellipse
so how do i get the y value for the foci, the x being 7.937 right?
Offsets: foci are at x = 5 y-values are -4 +/- 7.937 = -11.937, 3.937
This ellipse has its long dimension vertical.
so its -11.937,3.937?
Those are the y's. (5,-11.937) and (5,3.937)
Maybe I didn't say that clearly. Because the ellipse is oriented vertically (y stretched more), the foci have the same x-value, which is equal to the origin, 5. The foci are +/- sqrt(63) see above with respect to the y-value of the origin, which is -4, so that gives what I said.