anonymous
  • anonymous
cos67degrees 30'= ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
ash2326
  • ash2326
@IloveCharlie what's 30' in degrees?
anonymous
  • anonymous
Divide 30 seconds by 60. After that, add it to 67. Then take the cosine of it all.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Hmmm... I got .382. Can you please confirm?
ash2326
  • ash2326
yeah, it's right but could you use calculator for this? @IloveCharlie
anonymous
  • anonymous
I just don't know which one it matches up with :/ From the options given
anonymous
  • anonymous
Whoa @jim_thompson5910 you're typing a lot
jim_thompson5910
  • jim_thompson5910
Yes it's a lot, but it at least gives you the exact answer 67 degrees 30' = 67 degrees + 30/60 = 67+0.5 = 67.5 degress Notice how 2*67.5 = 135 and \[\Large \cos(135) = -\frac{\sqrt{2}}{2}\] (using the unit circle) Now turn to the identity \[\Large \cos(x) = \sqrt{ \frac{ \cos(2x) + 1 }{2} }\] If we let x = 67.5, then \[\Large \cos(x) = \sqrt{ \frac{ \cos(2x) + 1 }{2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{ \cos(2*67.5) + 1 }{2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{ \cos(135) + 1 }{2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{ -\frac{\sqrt{2}}{2} + 1 }{2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{ -\frac{\sqrt{2}}{2} + \frac{2}{2} }{2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{ \frac{-\sqrt{2}+2}{2} }{2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{ \frac{2-\sqrt{2}}{2} }{2} }\] \[\Large \cos(67.5) = \sqrt{ \left( \frac{2-\sqrt{2}}{2} \right)\left(\frac{1}{2}\right) }\] \[\Large \cos(67.5) = \sqrt{ \frac{(2-\sqrt{2})*1}{2*2} }\] \[\Large \cos(67.5) = \sqrt{ \frac{2-\sqrt{2}}{4} }\] \[\Large \cos(67.5) = \frac{\sqrt{2-\sqrt{2}}}{\sqrt{4}}\] \[\Large \cos(67.5) = \frac{\sqrt{2-\sqrt{2}}}{2}\]
jim_thompson5910
  • jim_thompson5910
sry i had a typo, but i fixed it
anonymous
  • anonymous
Wow, thanks so much for the awesome step by step explanation! Really helps!
jim_thompson5910
  • jim_thompson5910
you're welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.