Find the Taylor series for \[f(x)=sinx\] centered at \[a=\frac{\pi}{2}\] \[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the Taylor series for \[f(x)=sinx\] centered at \[a=\frac{\pi}{2}\] \[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}\]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I've figured out what the sum is
are u from socrates's class?
who's that?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

nvm
i have exam 5 on this tmr, and final on the day after that =]
oh I see.
Oh I think what I wrote is a maclaurin series
i don get this section of the chapter either
I have to write it from scratch every time...
oh I messed up, the factorials should be 1 less, I skipped n=1 factorial...\[f(x)=\sum_{n=0}^\infty{f^{(n)}(a)\over n!}(x-a)^n\]\[=\frac1{1!}(x-\frac\pi2)-\frac1{3!}(x-\frac\pi2)^3+\frac1{5!}(x-\frac\pi2)^5-...\]
so where does the pi go ? (no pun intended :P)
give me a second to look it this...I'm kinda new and slow at this.
oh no I've messed up terribly, this is all wrong... I should probably have just slept :P lol
No it's not that. I guess the x and a's and n confuse me.
The formula for the Taylor expansion around \(x=a\) is\[f(x)=\sum_{n=0}^\infty{f^{(n)}(a)\over n!}(x-a)^n\]in your case \(a=\frac\pi2\) let's go check each term:\[\{a_0\}={f^{(0)}(\frac\pi2)\over0 !}(x-\frac\pi2)^0=\sin\frac\pi2=1\]\[\{a_1\}=\frac1{1!}\cancel{\cos\frac\pi2}^{\huge0}(x-\frac\pi2)^1=0\]\[\{a_2\}=-\frac1{2!}\sin\frac\pi2(x-\frac\pi2)^2=-\frac1{2!}(x-\frac\pi2)^2\]\[\{a_3\}=-\frac1{3!}\cancel{\cos\frac\pi2}^{\huge0}(x-\frac\pi2)^3=0\]so the pattern is that all odd n terms stay
Oh darn! I get it now. For a second I forgot what \[f^{(0)}\] and \[f^{(1)}\] meant. Durrr so the zero derivative is sin(pi/2) and \[(x-\frac{\pi}{2})^0 =1\] makes sense
I get the first line....now on to the second line
one sec, I have to deal with a potentially problematic user...sorry brb
all odd n terms are 0 though
right I said it backwards :/ sorry I'm pretty tired I guess
no worries :P
\[\{a_1\}={f^{(1)}(\frac\pi2)\over1!}(x-\frac\pi2)^1\]and\[f(x)=\sin x\implies f'(x)=\cos x\implies f'(\frac\pi2)=0\]so\[\{a_1\}={1\over1!}(0)(x-\frac\pi2)^1=0\]
yep that makes sense
\[\{a_2\}={f^{(2)}(\frac\pi2)\over2!}(x-\frac\pi2)^2\]and\[f'(x)=\cos x\implies f''(x)=-\sin x\implies f''(\frac\pi2)=-1\]so\[\{a_2\}={1\over2!}(-1)(x-\frac\pi2)^1=-{1\over2!}(x-\frac\pi2)\]
next one will be zero...
*another typo, the last one should be\[\{a_2\}=-\frac1{2!}(x-\frac\pi2)^2\](I forgot the n=2 in the exponent on the parentheses)
\[\{a_4\}={f^{(4)}(\frac\pi2)\over4!}(x-\frac\pi2)^4\]and\[f(x)=\sin x\implies f^{(4)}(x)=\sin x\implies f^{(4)}(\frac\pi2)=1\]so\[\{a_4\}={1\over4!}(1)(x-\frac\pi2)^4={1\over4!}(x-\frac\pi2)^4\]by now a pattern should be emerging
yep I see the pattern now. Thanks @TuringTest
welcome :)
my suggestion ... keep it easy as much as possible http://www.wolframalpha.com/input/?i=expand+sin%28x%29+at+pi%2F2&dataset=&equal=Submit http://www.wolframalpha.com/input/?i=expand+cos+x+at+0
let x = u + pi/2, u=0 ... it is equivalent to expansion of cos u at u=0, change back u = x - pi/2
I won't be able to use wolfram on my final exam though
yeah I realized that @experimentX but I though it good practice to do it manually first time around thanks for reminding me to point that out though, I had almost forgotten
yep ... math hacks!!
|dw:1343925856092:dw|
thnx!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question