anonymous
  • anonymous
Last problem I need help with! Please! Using the given data, find the values of sine, cosine, and tangent of 2 A and the quadrant in which 2 A terminates: angle A in Quadrant II, cos A = -7/25 cos 2 A = a. 527/625 b. -336/625 c. 336/625 d. -527/625
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ajprincess
  • ajprincess
\(\cos2A=2\cos A\sin A\) Find the value of sinA using \(\sin A=\sqrt{1-\cos^2A}\). Can u do nw?
anonymous
  • anonymous
So 2(-0.28)(0.276)
anonymous
  • anonymous
:/ It's not matching up

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ajprincess
  • ajprincess
Find them in the fraction form. Vat do u get for sinA?
anonymous
  • anonymous
69/250
anonymous
  • anonymous
cos=Adjacent/Hypotenuse and sin=Opposite/Hypotenuse and tan=Opposite/ajacent so here you have given just adjacent and hypotenuse and you can fine opposite by Pythagourus Theorum.
ajprincess
  • ajprincess
\(\sin A=\sqrt{1-\cos^2A}\) \(\sin A=\sqrt{1-(\large\frac{-7}{25})^2}\) \(\sin A=\sqrt{1-\large\frac{49}{625}}\) \(\sin A=\sqrt{\large\frac{625-49}{625}}\) \(\sin A=\sqrt{\large\frac{576}{625}}\) \(\sin A=\large\frac{24}{25}\) Nw can u find cos2A?
anonymous
  • anonymous
its hard method friend. find sin by sin=perp/hyp we need perp so from cos=base/hyp here base=-7 and hyp=25 so now use Pythagoras theorem to find perp.
anonymous
  • anonymous
Yes! -336/625. Thank you so much for step by step explanation! @ajprincess Thank you to @muhammad9t5 as well. I appreciate the time and effort my friends
ajprincess
  • ajprincess
U r welcome.:)
anonymous
  • anonymous
hyp^2=base^+perp^2 25^2=-7^2+perp^2 625=49+perp^2 625-49=perp^2 576=perp^2 24=perp
anonymous
  • anonymous
thanks! you are always welcome friend.
ajprincess
  • ajprincess
I agree vth u @muhammad9t5. Ur method is easy.
anonymous
  • anonymous
yup. @ajprincess please fan me.
ajprincess
  • ajprincess
I fanned u. i fan all those who fan me.:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.