Matrix Help!

- anonymous

Matrix Help!

- jamiebookeater

See more answers at brainly.com

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- anonymous

##### 1 Attachment

- anonymous

what type of math class is this?

- anonymous

It's math team :) But it is Algebra II

Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

- angela210793

I guess this is what you wanted :)
|dw:1343828412416:dw|

- anonymous

Wait, what? o.O I understand what you did when you did the cofactor part, but not after that.

- angela210793

tell me on my drawing wht didnt u understand please

- anonymous

|dw:1343828609211:dw|
Also, that wasn't the answer they gave?

- anonymous

Or was that just a part of the process?

- angela210793

just calculations O.o|dw:1343828726092:dw|

- anonymous

How does that work? o.O Sorry, I just haven't done TOO much with matrices yet...

- angela210793

Hmmmm....im sorry i am not sure how to explain you why it is like that....:(
it just is like that
hmmmm....u can try these...they r pretty good http://www.khanacademy.org/math/algebra/algebra-matrices?k

- anonymous

Well, the final answer is a matrix...can you tell me what topic for matrices to watch? I've watched all of them to the extent of Algebra II material.

- angela210793

Hmmmm....maybe I've misunderstood wht u want to find...
hang on a sec

- angela210793

watch inverting matrices

- anonymous

Wouldn't the inverse be \[\left[\begin{matrix}-2 & 1 \\ 4 & 4\end{matrix}\right]\]

- anonymous

Or do I multiply by the reciprocal of the determinant?

- angela210793

tell me smth
u want to find the inverse of the |dw:1343829407799:dw|

- anonymous

Would I perform this:
\[-\frac1{12}\left[\begin{matrix}-2 & 1 \\ 4 & 4\end{matrix}\right]\]

- anonymous

Yes. I want to find the inverse of what's above in your picture.

- angela210793

learnt this At Khan's videos
so jusat plug in the numbers now |dw:1343829481250:dw|

- angela210793

or read this...is very well explained http://dcann.myweb.uga.edu/lect08add.pdf

- anonymous

Isn't that what I did above?
|dw:1343829681330:dw|

- angela210793

yup :)

- anonymous

Alright, so the answer would be:
\[\left[\begin{matrix}\frac16 & -\frac1{12} \\ -\frac13 & -\frac13\end{matrix}\right]\]

- angela210793

shouldnt it be |dw:1343830119553:dw|

- anonymous

Is there supposed to an aboslute value on the A? not sure...I thought that a and d switched places and that b and c negated...maybe I'm wrong?

- angela210793

no abs value

- anonymous

So it would be correct what I did?

- angela210793

hang on a sec pls...im on the phone

- angela210793

i said so...from the second link i sent u

- anonymous

Wait. Let me check the link...

- angela210793

oh wait ...-_-

- anonymous

I have not gone that far into matrices quite yet...haven't learned to transpose... -_-

- angela210793

it was as u said...sorry...it's too hot in here -_-'' I'm not thinking well :p
|dw:1343830633083:dw|

- anonymous

lol ok. Thanks :)

- angela210793

|dw:1343830704511:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.