anonymous
  • anonymous
Solve x2 – 4x = 12 by completing the square
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathslover
  • mathslover
\[\large{x^2-4x-12=0}\] right?
anonymous
  • anonymous
you just add 4 to both sides. that will make it \[(x-2)^{2}=16\]
anonymous
  • anonymous
@mathslover yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathslover
  • mathslover
ok so now .. \[\large{x^2-4x-12=x^2-4x+4-16=0}\] right?
anonymous
  • anonymous
Yeah
mathslover
  • mathslover
now can u write \[\large{x^2-4x+4=(x-2)^2}\] ??
mathslover
  • mathslover
(x)^2 -2(2)(x)+2^2 = a^2-2ab+b^2=(a-b)^2=(x-2)^2
anonymous
  • anonymous
Stuck
mathslover
  • mathslover
ok so : (x^2-4x+4) = (x-2)^2 ?
anonymous
  • anonymous
x^2-4x-12=0 x=-2 x=6? or am I doing it wrong
mathslover
  • mathslover
I think you are doing it wrong ; : x^2-4x-12 = 0 \[\large{x^2-4x+4-16=0}\] \[\large{(x-2)^2-16=0}\] \[\large{(x-2-4)(x-2+4)=0}\] \[\large{(x-6)(x+2)=0}\] hence either x = 6 or x = -2
mathslover
  • mathslover
always remember that : \[\large{(a-b)^2=a^2-2ab+b^2}\] \[\large{(a+b)^2=a^2+2ab+b^2}\]
mathslover
  • mathslover
or : \[\large{(a\pm b)^2=a^2\pm 2ab +b^2}\]
anonymous
  • anonymous
You're awesome! Thank you so much! The formulas were very helpful :)
mathslover
  • mathslover
nice to hear .. :) best of luck

Looking for something else?

Not the answer you are looking for? Search for more explanations.