anonymous
  • anonymous
Fourier transform question: My professor has been using this equation for the fourier transform:\[F[f(\xi)]=\int\limits_{-\infty}^{\infty}f(x)e^{-i \xi x}dx\] But I have a book that claims this is the fourier transform: \[F[f(\xi)]=\frac{1}{\sqrt{2 \pi}}\int\limits_{-\infty}^{\infty}f(x)e^{-i \xi x}dx\] So........ what's with the 1/sqrt(2 pi)? For context, this is a PDE class.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I see a confusion about the fourier transform for angular and ordinary frequency http://en.wikipedia.org/wiki/Fourier_transform#Functional_relationships
ash2326
  • ash2326
@abstracted both are correct, some books use \(2\pi\) with the fourier transform and some use it with inverse fourier transform. Important thing is to use \(2\pi\) only with one of them

Looking for something else?

Not the answer you are looking for? Search for more explanations.