anonymous
  • anonymous
The sum of an arithmetic series is 1356 and the first term is -1. If the common difference is 5, how many terms are in the sequence?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ash2326
  • ash2326
@katiebugg Sum of n terms is given 1356 First term \(a_1=-1\) and common difference=5 we know that sum to n terms is given as \[S_n=\frac{n}{2}(a_1+a_n)\] \(a_n\) is the last term Do you get till this?
anonymous
  • anonymous
yess
ash2326
  • ash2326
we know \(a_n\) is given as \[a_n=a_1+(n-1)d\] d=common difference n=no. of terms so sum will become \[S_n=\frac n2 (a_1+a_1+(n-1)d)\] now pluigin the numbers here and post what do you get, will you?

Looking for something else?

Not the answer you are looking for? Search for more explanations.