anonymous
  • anonymous
Does anyone know how to find the Inverse Laplace Transform of 6/(s^3+3s)
MIT 18.03SC Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
athe
  • athe
It is combination of simple Laplace transformation:\[\frac{6}{s^3+3s}=\frac{6}{s(s^2+3)}\] Use Method of undetermined coefficients: \[\frac{6}{s(s^2+3)} \rightarrow \frac{2}{s}-\frac{2s}{s^2+3}\] Use well know transformation for this functions: \[\frac{2}{s} \rightarrow 2\cdot H(t)\], H(t) - Heaviside step function \[\frac{2s}{s^2+3}\rightarrow 2\cdot \cos(\sqrt{3}t)\] \[\frac{6}{s^3+3s} \rightarrow 2\cdot H(t) +2\cdot \cos(\sqrt{3}t)\]
anonymous
  • anonymous
we know that L[sin 3^(1/2) t]= (3^(1/2))/(s^2+3) and L[integral f(k) dk (in limits 0 to t)]=L[f(t)]/s. Here we can consider f(t)=sin 3^(1/2) t,then (3^(1/2))/s(s^2 +3) =integral f(k) dk in limits 0 to t .the integral value is 1-(cos3^(1/2) t)/(3^(1/2)). therefore, L[6/((s^3)+3s)] = 2(1-(cos3^(1/2) t)/(3^(1/2)).

Looking for something else?

Not the answer you are looking for? Search for more explanations.