anonymous
  • anonymous
Look at the argument below. Which of the following symbolic statements shows the set-up used to find the validity of the argument? If it is July, then I am living at the lake. I am not living at the lake. Therefore, it is not July. p: It is July. q: I am living at the lake. A) [(p → q) ∧ ~q] ∴ p B)[(p → q) → q] ∴ p C)[(p → q) ∧ ~q] ∴ ~p D)[(p → q) ∧ q] ∴ p
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
I think you lost a symbol in the act of copy-paste
anonymous
  • anonymous
A) [(p → q) ∧ ~q] ∴ p B)[(p → q) → q] ∴ p C)[(p → q) ∧ ~q] ∴ ~p D)[(p → q) ∧ q] ∴ p
TuringTest
  • TuringTest
okay, so how does it say we write the part that says "I am living at the lake" ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok
anonymous
  • anonymous
q
TuringTest
  • TuringTest
correct, so how do we write the statement "I am not living at the lake." ?
anonymous
  • anonymous
i have no idea
TuringTest
  • TuringTest
the negation symbol (NOT) is the tilde: ~ so if if "I am living at the lake": q then "I am NOT living at the lake": ?
anonymous
  • anonymous
[(p → q) ∧ ~q] ∴ ~p
anonymous
  • anonymous
???
TuringTest
  • TuringTest
yes
TuringTest
  • TuringTest
good job

Looking for something else?

Not the answer you are looking for? Search for more explanations.