anonymous
  • anonymous
Unsure.... \[f(x)=x^2tan^{-1}(x^3)\]
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I'll post the remainder of the question in just a second...bear with me
anonymous
  • anonymous
From the MacLaurin Table: \[tan^{-1}(x)=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}\]
anonymous
  • anonymous
This is what I've come up with so far: \[x^2\sum_{n=0}^{\infty}(-1)^n\frac{(x^3)^{2n+1}}{2n+1}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Hmmmm....could it be: \[x^2\sum_{n=0}^{\infty}(-1)^n\frac{(x^3)^{2n+3}}{2n+1}\]?
anonymous
  • anonymous
I meant: \[\sum_{n=0}^{\infty}(-1)^n\frac{(x^3)^{2n+3}}{2n+1}\]
KingGeorge
  • KingGeorge
I think both the first and third solutions you have are correct.
anonymous
  • anonymous
I am inclined to agree
anonymous
  • anonymous
Yes! So this would be correct? \[\sum_{n=0}^{\infty}(-1)^n\frac{(x^3)^{2n+3}}{2n+1}\]
KingGeorge
  • KingGeorge
Looks good to me. If you wanted to, you could also say\[(x^3)^{2n+3}=x^{6n+9}\]
anonymous
  • anonymous
ok Thanks!
KingGeorge
  • KingGeorge
You're welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.