Can someon please help!! I'm totally lost and if you can start me off, I'd really appreciate it! (it's attached)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can someon please help!! I'm totally lost and if you can start me off, I'd really appreciate it! (it's attached)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

oh fun, systems of differential equations
can you please help me?!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

if anyone knows this off the top of their head,feel free to jump in but i need to look this up cause i havent done this in a while
oh ok but if you figure it out please let me know!
x1'=-.025x1+.01x2+1 x2'=-.02 x1 -.01x2 \[x_1'=F(x_1,x_2)\] \[x_2'=G(x_1,x_2)\] \[\frac{dU}{dt} = AU\] \[U= \left(\begin{matrix}u \\ v\end{matrix}\right)\] \[A= \left[\begin{matrix}F_x & F_y \\ G_x & G_y\end{matrix}\right]\] find eigenvalues& eigenvectors

Not the answer you are looking for?

Search for more explanations.

Ask your own question