anonymous
  • anonymous
In how many ways can a gymnastics team of 4 be chosen from 9 gymnasts?
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
dont get this one, could someone show me the steps?
lgbasallote
  • lgbasallote
"chosen" so you use combinations
anonymous
  • anonymous
from 9 choose 4. 9C4 = ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

lgbasallote
  • lgbasallote
arent you missing something?
anonymous
  • anonymous
362880?
lgbasallote
  • lgbasallote
that's 9!
anonymous
  • anonymous
don't forget to divide by all the same combinations (n-r)!
lgbasallote
  • lgbasallote
\[9C4 \implies \frac{9!}{4!(9-4)!}\]
anonymous
  • anonymous
dividing by (n-r)! is what separates the combination formula from the permutation, because you are not counting all the different arrangements
lgbasallote
  • lgbasallote
isnt dividing r! what separates it?
lgbasallote
  • lgbasallote
\[nCr = \frac{n!}{r!(n-r)!}\] \[nPr = \frac{n!}{(n-r)!}\]
lgbasallote
  • lgbasallote
dividing by r! is just the difference i see =))
anonymous
  • anonymous
126!!
lgbasallote
  • lgbasallote
i hope those ! arent factorials :p haha
lgbasallote
  • lgbasallote
anyway yeah. 9C4 = 126
anonymous
  • anonymous
ya:P
anonymous
  • anonymous
Ooops, I meant r! not (n-r)! for all the above posts. Sorry :o

Looking for something else?

Not the answer you are looking for? Search for more explanations.