moongazer
  • moongazer
is this correct? please check my answer :)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
moongazer
  • moongazer
|dw:1344582621979:dw|
moongazer
  • moongazer
find the area of sector I got (128pi)/9 but my book says 35.45 What is the correct answer?
moongazer
  • moongazer
radius=8 \[\theta=80degrees\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

moongazer
  • moongazer
I double checked it and I am always getting (128pi)/9 or 44.68
anonymous
  • anonymous
Area of sector = pi*r^2 * theta/360°
anonymous
  • anonymous
Sub in values: pi*8^2 * 80/360 = 128pi/9
anonymous
  • anonymous
I'm pretty sure you're correct
moongazer
  • moongazer
maybe the book has a typo Isn't it that Area of sector = (1/2) (r^2) (theta) theta is in radians
moongazer
  • moongazer
thanks :)
anonymous
  • anonymous
\[Area = \frac{1}{2} \times 64 \times 80 \times \frac{\pi}{180} \implies 44.65\]
anonymous
  • anonymous
Just trying..
moongazer
  • moongazer
@waterineyes I think it should be 44.68 ? :)
anonymous
  • anonymous
Actually it can be: \[Area = 44.698\]
anonymous
  • anonymous
As value of \(\pi\) is not exact so you cannot say about the exact value..
anonymous
  • anonymous
Here we all are approximating this value..
moongazer
  • moongazer
ohh ok I get it :)
anonymous
  • anonymous
Surely your book is carrying something wrong for this question.. You are right @moongazer
moongazer
  • moongazer
Thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.