moongazer
  • moongazer
please check my answer :) Find the remainder using remainder theorem
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
\[\checkmark \]
moongazer
  • moongazer
I'll just post it :)
ParthKohli
  • ParthKohli
When \(f(x)\) is divided by \(x - k\), then the remainder is \(f(k)\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

lgbasallote
  • lgbasallote
yes that's right
ParthKohli
  • ParthKohli
That is, you just have to replace \(x\) with \(k\).
anonymous
  • anonymous
Yeah I got it itz when f(x) is divided by x−k, then the remainder is f(k)
moongazer
  • moongazer
\[(-x^4 +2x^3 + x^2 -x -4)/(x-4)\] my answer is -120 I just got confused with this one because of -x^4 :)
ParthKohli
  • ParthKohli
\[-4^4 + 2(4)^3 + 4^2 - 4 - 4 \]
anonymous
  • anonymous
thats right
ParthKohli
  • ParthKohli
\(-x^4\) is like finding \(x^4\) then putting the negative sign.
moongazer
  • moongazer
Thanks to all of you :)
ParthKohli
  • ParthKohli
You're welcome!! =)

Looking for something else?

Not the answer you are looking for? Search for more explanations.