Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

For the diff eq. (dy/dx)=(1-y)/x, I see that it is not continuous or defined at x=0. however, if you graph the solution y=cx+1, then you get solutions passing thru (0,1). This violates the existence part of the existence and uniqueness theorem doesn't it? I mean, I see that uniqueness fails because the partial derivative with respect to y of f is not defined at x=0. But the existence part should fail everywhere on x=0 as well. But it does not at 0,1. Many solution curves pass through there. ? Please help.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

Get your **free** account and access **expert** answers to this and **thousands** of other questions

- anonymous

- katieb

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- anonymous

The solution to your differential equation is actually y=1+c/x.
The existence and uniqueness theorem doesn't say when there won't be a solution; it just tells you under what conditions can we guarantee a (unique) solution. If the existence and uniqueness theorem does not apply, it tells you nothing. There could be solutions, or a unique solution, or no solution at all.

- anonymous

actually, the existence and the uniqueness fail at x=0 so there should be no unique solution there. in other words, no solution at all.

- anonymous

Excuse me. Tornado.adv4, how do you know what you say is true just from the definition of uniqueness and existence. I cannot tell?

Looking for something else?

Not the answer you are looking for? Search for more explanations.