anonymous
  • anonymous
sqrt 81/ sqrt 7
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
options 9/7 9sqrt7/7 sqrt7/7 9/sqrt7
amistre64
  • amistre64
sqrt are like blobs of jelly; they cen combine and separate at will
amistre64
  • amistre64
i recall alot of texts saying that sqrt in the bottom tho are not proper .... for some reason

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\frac{\sqrt {81}}{ \sqrt {7}} =\frac{\sqrt {9*9}}{ \sqrt {7}}\]
anonymous
  • anonymous
you think can simplify it from there?
amistre64
  • amistre64
there are 2 equal options .....
anonymous
  • anonymous
no look again
anonymous
  • anonymous
9 / sqrt 7
anonymous
  • anonymous
good job you are right\[\frac{9 }{ \sqrt {7}}\]
amistre64
  • amistre64
\[\frac{9\sqrt7}{7}=\frac{9}{\sqrt7}\] \[\frac{\sqrt7}{7}=\frac{1}{\sqrt7}\] \[\frac{\sqrt7\sqrt7}{7\sqrt7}=\frac{1}{\sqrt7}\] \[\frac{7}{7\sqrt7}=\frac{1}{\sqrt7}\] \[\frac{1}{\sqrt7}=\frac{1}{\sqrt7}\]
amistre64
  • amistre64
so the issue is; which one is "proper" form
anonymous
  • anonymous
yess!!!! thank you so much
anonymous
  • anonymous
I think the issue is where the boundaries are since I can interpret in a completely different way if I try.
anonymous
  • anonymous
That's why I don't trust answer choices....
anonymous
  • anonymous
thanks anyway amistre
amistre64
  • amistre64
i read it right ... confused myself as a sipped the coffee
amistre64
  • amistre64
http://www.purplemath.com/modules/radicals5.htm no radicals under

Looking for something else?

Not the answer you are looking for? Search for more explanations.