anonymous
  • anonymous
evaluate s x( (8+2x-x^2) )^1/2 dx p/s: s is for integrate
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mimi_x3
  • Mimi_x3
I assume its an integral \[\int\limits x\sqrt{8+2x-x^{2}}dx \] Well, complete the square first; then looks like a sub
anonymous
  • anonymous
yes. I've done the completing the square but not sure whats the next step. by part or substitution?
Mimi_x3
  • Mimi_x3
looks like a substitution would be easier

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok. i"ll try again. tq :)
anonymous
  • anonymous
still dont get it. help me plez :(
Mimi_x3
  • Mimi_x3
\[\int\limits x\sqrt{-x^{2}+2x+8} dx => \int\limits x\sqrt{-(x^{2}-2x-8)} dx => \int\limits x\sqrt{-((x^{2}-1)^{2}-(1)^{2}+8))} dx\] \[=> \int\limits x\sqrt{-(x^{2}-1)-9} dx => \int\limits x\sqrt{9-(x-1)^{2}} dx\] let u = x-1 -> x = u+1 \[=> \int\limits\left(u+1\right)\sqrt{9-u^{2}}du \]
Mimi_x3
  • Mimi_x3
then it's trig sub
Mimi_x3
  • Mimi_x3
\[ x= sin\theta\]
anonymous
  • anonymous
ok mimi.i'll try. thanks again.
Mimi_x3
  • Mimi_x3
np and for this u = 3sin\theta

Looking for something else?

Not the answer you are looking for? Search for more explanations.