anonymous
  • anonymous
Evaluate the line integral \[\int_c F\cdot dr\] where c is given by \[\hat r (t)=t\hat i +sint\hat j +cost \hat k\] \[0 \le t le \pi\] and: \[\hat r(t)=\hat i +cost \hat j -sint \hat k\] \[F(x, y, z)=z\hat i+y \hat j-x\hat k\] x=t y=sint z=cost \[\int_0^{\pi}(cost\hat i +sint\hat j-t\hat k)\cdot(\hat i+cos(t) \hat j -sint \hat k)dt\] \[\int_0^{\pi}(cost+sintcost+tsint)dt\] \[\int_0^{\pi} cost dt+\int_0^{\pi} sintcostdt+\int_0^{\pi}tsintdt\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[sint]_0^{\pi}+\int_0^0 udu+[-tcost+sint]_0^{\pi}\]
anonymous
  • anonymous
mukushla is not typing a reply…whats wrong with site...lol let me check it
anonymous
  • anonymous
LOL...i think mukushla should type a reply

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
its allright but what is that middle integral !!?
anonymous
  • anonymous
u substitution u =sint du=cost dt sin(pi)=0 sin(0)=0
anonymous
  • anonymous
almost done
anonymous
  • anonymous
0?
anonymous
  • anonymous
yes
anonymous
  • anonymous
cos Pi is -1 though
anonymous
  • anonymous
so negative pi should be the answer?
anonymous
  • anonymous
and cos (0) is 1 oh it cancels out!
anonymous
  • anonymous
no that still doesn't seem right... :(
anonymous
  • anonymous
i meant 0 for middle integral
anonymous
  • anonymous
answer is \(\pi\) ?
anonymous
  • anonymous
the first integral would be zero too and then we have left \[[-tcost+sint]_0^{\pi}=\pi\]
anonymous
  • anonymous
YAY!
anonymous
  • anonymous
We are DONE.....;-D

Looking for something else?

Not the answer you are looking for? Search for more explanations.