A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 3 years ago
Find the Laplace transform of the function given by f(t)=2t if t<=2 and f(t)=4 if t>2
anonymous
 3 years ago
Find the Laplace transform of the function given by f(t)=2t if t<=2 and f(t)=4 if t>2

This Question is Closed

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0Ok. So you split up your integrand into two parts, right?

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0I got 2+(2/(1+s)) and it was wrong

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0\[L\{f(t)\}=\int_{0}^{inf}e^{st}f(t)~dt\]

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0in this case, you split the integral up into 2 sections

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0I did that and I was wrong :(

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0can you type up your work? then we can see where the mistake might have happened

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0theres a shifting method that i can never remember, so i tend to do it the splitted way

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0yea 2\[2\int\limits_{0}^{2}e^(st)+\int\limits_{0}^{infinity}4e^(st)dt\]

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0it's supposed to be e^(st)

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.00,2; then 2,inf for starters; and dont forget your "t" on the left side

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0f(t)=2e^(2s)/s + 2/s

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0oh sorry i actually have that down on my paper but I just typed it wrong

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0\[2\int_{0}^{2}e^{st}t+4\int_{2}^{inf}e^{st}dt\]

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0\[\large \int_0^2 2te^{st}\,dt+\int_0^{\infty}4e^{st}\,dt=2\int_0^2 te^{st}\,dt+4\int_0^{\infty}e^{st}\,dt\]Just making it look better :)

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0@amistre64 thats what I have. What do I do afterwards but thats where I went wrong

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0Thanks @Herp_Derp but I have that but afterwards is where I'm confused

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.02 to inf on the last one, the long right term is simple enough; the left side is by parts

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0I know I got that but afterwards is where I'm confused

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0for the firsr part the integral ends up equaling (3(1e^(2s)(2s+1))/(s^2)

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0and the second integral is (e^(2s))/s

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0so (3(1e^(2s)(2s+1))/(s^2) +(e^(2s))/s

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0\[2\int_0^2 te^{st}\,dt+4\int_2^{\infty}e^{st}\,dt\] \[2(~\left.\frac{te^{st}}{s}\right_{t=0}^{t=2}+\frac{1}{s}\left(\int_0^2 e^{st}\,dt\right)+4\left.\frac{e^{st}}{s}\right_{t=2}^{t=inf}\]

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0this thing aint latex friendly :) \[2\left.\frac{te^{st}}{s}\right_{t=0}^{t=2}+\frac{2}{s}\left(\int_0^2 e^{st}\,dt\right)+4\left.\frac{e^{st}}{s}\right_{t=2}^{t=inf}\] \[2\left.\frac{te^{st}}{s}\right_{t=0}^{t=2}+\left.\frac{2}{s}\frac{e^{st}}{s}\right_{t=0}^{t=2}+4\left.\frac{e^{st}}{s}\right_{t=2}^{t=inf}\] \[2\frac{te^{2s}}{s}2\frac{te^{0}}{s}+\frac{2}{s}\frac{e^{2s}}{s}\frac{2}{s}\frac{e^{0}}{s}+4\frac{e^{s(inf)}}{s}4\frac{e^{2s}}{s}\]

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0id clean it up a little if i was you

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0\[\frac{2te^{2s}}{s}+\frac{2t}{s}\frac{2e^{2s}}{s^2}+\frac{2}{s^2}+\cancel{4\frac{e^{s(inf)}}{s}}+\frac{4e^{2s}}{s}\] stuff like that

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0great time for loading issues eh

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0\[2\int_{0}^{2}e^{st}t+4\int_{2}^{inf}e^{st}dt\] \[2(\frac{e^{2s}1}{s^2})+4\frac{e^{2s}}{s}\] or some variation of that should work

amistre64
 3 years ago
Best ResponseYou've already chosen the best response.0i never did get into the heaviside stuff to be competent enough in that method

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0sorry openstuy froze up! an it's still wrong
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.