anonymous
  • anonymous
if y=(√3x^2-4), then dy = a. 6x(√3x^2-4)dx b. (3x)/(√3x^2-4)dx c. (6x)/(√3x^2-4) d. 2(√3x^2-4)/(3x)dx there is an E choice but it cut off, is it E??...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Dude, we're not here to do problems for you. I'm here to help work through them. Your question should be: Help me find the differential dy given \[y=\sqrt x^2-4\]
anonymous
  • anonymous
So do you need help differentiating or not? Also, your function's not clear. Is this it? \[y=\sqrt{3x^2-4}\]
anonymous
  • anonymous
yes vf321, sorry but \[y=\sqrt{3x^2-4}\] is right

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
When dealing with chain rule, it often helps to make your own functions up. Let: \[f(x) = \sqrt x\]\[g(x)=3x^2-4\]Then,\[y=f(g(x))\]Well let's take d/dx of both sides.\[\frac{dy}{dx}=f'(g(x))g'(x)\]Now, all you have to do is multiply by dx on both sides and replace all the f's and g's with their actual values. \[\frac{dy}{dx}dx=f'(g(x))g'(x)dx\]\[dy = f'(g(x))g'(x)dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.