MSMR
  • MSMR
can you square across an inequality?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mertsj
  • Mertsj
No
anonymous
  • anonymous
\(\geq^2\) like that?
Mertsj
  • Mertsj
-4<0 Squaring both sides: 16<0 Doesn't always work, does it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\(-2<1\) what happens when you square?
MSMR
  • MSMR
oh, you would get 4 < 1
MSMR
  • MSMR
how do you know when you can square things, or can you just not square things at all?
ParthKohli
  • ParthKohli
You can square across when you have an inequality \(a > b\) and \(a,b\) are positive.
ParthKohli
  • ParthKohli
Or rather, nonnegative.

Looking for something else?

Not the answer you are looking for? Search for more explanations.