A community for students.
Here's the question you clicked on:
 0 viewing

This Question is Open

Mertsj
 2 years ago
Best ResponseYou've already chosen the best response.1\[\sqrt{9(5)k ^{6}kq ^{8}}\]

Mertsj
 2 years ago
Best ResponseYou've already chosen the best response.1Rewrite it like that and then take the square root of all the perfect square factors.

vishweshshrimali5
 2 years ago
Best ResponseYou've already chosen the best response.0\[\large\sqrt{45 k^7 q^8}\] Now , \[\large k^7 = \cfrac{k^7 * \color {red}k}{\color {green}k} = \cfrac{k^8}{k}\] also, \[\large\sqrt{k^8} = k^4\] and \[\large \sqrt{q^8} = q^4\] and \[\large \sqrt{45} = \sqrt{9*5} = \sqrt{9}\sqrt{5} = 3\sqrt{5}\] Now you can put all the values in the question \[\large\sqrt{45 k^7 q^8}\] \[\large \color {green}{\sqrt{45}} * \color {red}{\sqrt{k^7}} * \color {brown}{\sqrt{q^8}}\] we have already calculated \[\large \sqrt{45}\] \[\large \sqrt{q^8}\] and how to change \(\large k^7\) into \(\large \cfrac{k^8}{k}\) also we have find out \[\large\sqrt{k^8}\] You can solve it further also the way shown by @Mertsj is a lot easier you can use either of them.

vishweshshrimali5
 2 years ago
Best ResponseYou've already chosen the best response.0@Mertsj am I wrong somewhere ...... ?

vishweshshrimali5
 2 years ago
Best ResponseYou've already chosen the best response.0\[\large \cfrac{3k^4 q^4 \sqrt{5}}{\sqrt{k}}\] \[\large \cfrac {3k^4 q^4 \sqrt{5}*\sqrt{k}}{\sqrt{k}*\sqrt{k}}\] \[\large 3k^3 q^4 \sqrt{5k}\] Yours method is easier @Mertsj gud work
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.