anonymous
  • anonymous
What is the solution to P over 0.3 + 2 = 6? 2.4 1.2 13.3 26.7
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
What is the solution to P over 0.3 + 2 = 6? 2.4 1.2 13.3 26.7
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
You almost have the right answer. This is an example of a binomial distribution problem. If an experiment can only have two outcomes (usually written "success" and "failure," but in this case E and "not E"), the probability of success (in this case E) is p, the probability of failure (in this case "not E") is q = 1 - p, and the experiment is repeated N times with the outcomes of each experiment being independent of each other, then the probability of exactly k success (and thus N - k failures) is: P(k successes) = C%28N%2C+k%29+%28p%5Ek%29+%28q%5E%28N-k%29%29+=+%28%28N%21%29%2F%28%28k%21%29%28N+-+k%29%21%29%29+%28p%5Ek%29+%28q%5E%28N+-+k%29%29
anonymous
  • anonymous
In this case, N = 6, k = 2, N - k = 4, p = 0.3, and q = 1 - 0.3 = 0.7. So we substitute into the formula: P(k successes) = +%28%286%21%29%2F%28%282%21%29%284%21%29%29%29+%280.3%5E2%29+%280.7%5E4%29+=+15+%2A+%280.3%5E2%29+%2A+%280.7%5E4%29+=+0.324135+ So your only mistake is leaving off the exponent on 0.7.
anonymous
  • anonymous
first do 6-2 then 4 times 0.3 thats how u find the value of p

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
First you subtract 2 on both sides- P/0.3+2=4 -2 -2 ---------- That gives us P/0.3=2 Now we multiply 0.3 to both sides so we can cancel out the 0.3 under the P, and leave the p all by itself. |dw:1345216749247:dw| This finally gives us P=1.2 :D -Hope that helps :)
anonymous
  • anonymous
Thanks ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.