Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

For big-O complexity equations, how is something like \(\frac{N(N-1)}{2}\) simplifies to just \(O(N^2)\)? I know the constants can be ignored because they are not significant, but when expanded, For complexity equations, how is something like\[\frac{N(N-1)}{2} = \frac{N^2-N)}{2}\] Only the \(2\) is a constant, the other \(N\) is not but why does it end up to only \(O(N^2)\)?

Computer Science
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Look, we have : \[\frac{ N^{2} - N }{ 2 } = \frac{ 1 }{ 2 } N^{2} - \frac{ 1 }{ 2 } N\] So when we talk about the complexity, we usually ignore N because it's very very small than \[N^{2}\] Now we have Complexity equal : \[\frac{ 1 }{ 2 } N^{2}\] So with the O notation, the complexity will be : \[O(N^{2})\] Good luck.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question