anonymous
  • anonymous
Area under y = arctan(x) between x = 1 and x = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I don't understand how to integrate arctan(x) by hand
lgbasallote
  • lgbasallote
i think i remember it having something to do with integration by parts...
anonymous
  • anonymous
yep

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
We have to somehow use the tan function though
anonymous
  • anonymous
It says use the fact that y=artan(x) is the inverse of y = tan(x) to calculate the area between x = 1 and x =0
anonymous
  • anonymous
Any ideas?
anonymous
  • anonymous
We can also graph it for a hint
anonymous
  • anonymous
But we haven't learned integration by parts yet
.Sam.
  • .Sam.
@baddinlol You have to use integration by parts here, \[\int\limits \tan ^{-1}(x) \, dx\] \[u=\tan^{-1}x~~~~~dv=dx \\ \\ du=\frac{1}{1+x^2} ~~~~~v=x\] \[x \tan ^{-1}x-\int\limits \frac{x}{1+x^2} \, dx\] Then continue...

Looking for something else?

Not the answer you are looking for? Search for more explanations.