shubhamsrg
  • shubhamsrg
Let a_n = 1.............1 with 3^n digits. Prove that a_n is divisible by 3a_(n-1).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
shubhamsrg
  • shubhamsrg
|dw:1345625544093:dw|
anonymous
  • anonymous
a_n = 1...11...11..1 (divided them into three parts) a_(n-1)= 1...1 a_n/a_(n-1)=10...010...01 Example n=2 a_n=111 111 111 a_(n-1)=111 a_n/a_(n-1) = 1 001 001 n=3 a_n= 111111111 111111111 111111111 a_(n-1) = 111111111 a_n/a_(n-1) = 1 000000001 000000001
shubhamsrg
  • shubhamsrg
hmms,,seems satisfactory,,thanks! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

shubhamsrg
  • shubhamsrg
can we use induction here? just to generalize things more?
shubhamsrg
  • shubhamsrg
bah,,let it be,,thanks again..
anonymous
  • anonymous
You're welcome ^^

Looking for something else?

Not the answer you are looking for? Search for more explanations.