Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Let a_n = 1.............1 with 3^n digits. Prove that a_n is divisible by 3a_(n-1).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1345625544093:dw|
a_n = 1...11...11..1 (divided them into three parts) a_(n-1)= 1...1 a_n/a_(n-1)=10...010...01 Example n=2 a_n=111 111 111 a_(n-1)=111 a_n/a_(n-1) = 1 001 001 n=3 a_n= 111111111 111111111 111111111 a_(n-1) = 111111111 a_n/a_(n-1) = 1 000000001 000000001
hmms,,seems satisfactory,,thanks! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

can we use induction here? just to generalize things more?
bah,,let it be,,thanks again..
You're welcome ^^

Not the answer you are looking for?

Search for more explanations.

Ask your own question