lopus
  • lopus
i have a question in the code newton method say that answer is: >>> poly =(-13.39, 0.0, 17.5, 3.0, 1.0) #x4 + 3.0x3 + 17.5x2 - 13.39 >>> x_0 = 0.1 >>> epsilon = .0001 >>> print compute_root(poly, x_0, epsilon) (0.80679075379635201, 8) my answer is: (0.806790753796352, 7) why 8?
MIT 6.00 Intro Computer Science (OCW)
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

lopus
  • lopus
this is my code: http://dpaste.com/790245/
anonymous
  • anonymous
yo creo que tu codigo esta bueno, porque haciendo el seguimiento si se cuenta desde 0 llega hasta 6 y si se itera desde 1 es hasta 7
anonymous
  • anonymous
(3.7760990539788537, 1) (2.513165507392411, 2) (1.6266862300590645, 3) (1.0874006562988667, 4) (0.8541676766719186, 5) (0.8084748052947073, 6) (0.806790753796352, 7)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
it took 8 iterations instead of 7. was epsilon the same? is anything different in the code
lopus
  • lopus
yes epsilon is the same
lopus
  • lopus
i think found the solution: def compute_root(poly,x_0,epsilon): i=1 while epsilon<=abs(Evaluate_poly(poly,x_0)): derive=compute_derive(poly) x1= x_0-(Evaluate_poly(poly,x_0)/Evaluate_poly(derive,x_0)) i+=1 # change that why? x_0=x1 result=(x1,i) print result

Looking for something else?

Not the answer you are looking for? Search for more explanations.