lopus
  • lopus
i have a question in the code newton method say that answer is: >>> poly =(-13.39, 0.0, 17.5, 3.0, 1.0) #x4 + 3.0x3 + 17.5x2 - 13.39 >>> x_0 = 0.1 >>> epsilon = .0001 >>> print compute_root(poly, x_0, epsilon) (0.80679075379635201, 8) my answer is: (0.806790753796352, 7) why 8?
MIT 6.00 Intro Computer Science (OCW)
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
lopus
  • lopus
this is my code: http://dpaste.com/790245/
anonymous
  • anonymous
yo creo que tu codigo esta bueno, porque haciendo el seguimiento si se cuenta desde 0 llega hasta 6 y si se itera desde 1 es hasta 7
anonymous
  • anonymous
(3.7760990539788537, 1) (2.513165507392411, 2) (1.6266862300590645, 3) (1.0874006562988667, 4) (0.8541676766719186, 5) (0.8084748052947073, 6) (0.806790753796352, 7)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
it took 8 iterations instead of 7. was epsilon the same? is anything different in the code
lopus
  • lopus
yes epsilon is the same
lopus
  • lopus
i think found the solution: def compute_root(poly,x_0,epsilon): i=1 while epsilon<=abs(Evaluate_poly(poly,x_0)): derive=compute_derive(poly) x1= x_0-(Evaluate_poly(poly,x_0)/Evaluate_poly(derive,x_0)) i+=1 # change that why? x_0=x1 result=(x1,i) print result

Looking for something else?

Not the answer you are looking for? Search for more explanations.