anonymous
  • anonymous
Solve sin2x + 4sin x + 3 = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
do u know how to solve this ?
anonymous
  • anonymous
sin(2x) is more interesting :)
anonymous
  • anonymous
Is it sin^2x + 4sinx + 3 = 0 ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1345778720492:dw| i dont know why latex is not working..
ash2326
  • ash2326
@Lulu212 Is it \(\sin 2x \ or \ \sin^2 x\)?
anonymous
  • anonymous
sin 2x
Mimi_x3
  • Mimi_x3
\[sin2x + 4sinx + 3\]
Mimi_x3
  • Mimi_x3
\[sin2x = 2sinxcosx\] \[ 2sinxcosx + 4sinx + 3 = 0 \]
Mimi_x3
  • Mimi_x3
have you tried that yet?
anonymous
  • anonymous
hm...hm.... u need...to find the General soln of this....!
anonymous
  • anonymous
@UnkleRhaukus @Hero @jim_thompson5910 @myininaya
anonymous
  • anonymous
@Hero @hartnn
UnkleRhaukus
  • UnkleRhaukus
\[ \sin(2x) + 4\sin (x) + 3 = 0\] \[ 2\sin(x)\cos(x) + 4\sin (x) + 3 = 0\] \[2\sin (x)\left(\cos(x)+2\right)+3=0\] \[2\sin (x)\left(\cos(x)+2\right)=-3\] \[\cos(x)+2=\frac{-3}2\csc(x)\] i dont know
anonymous
  • anonymous
@satellite73 @saadi
Hero
  • Hero
I don't understand why @UnkleRhaukus can't finish it
anonymous
  • anonymous
Can u Finish @Hero i am also stuck..there
anonymous
  • anonymous
@jim_thompson5910
Mimi_x3
  • Mimi_x3
hmm http://www.wolframalpha.com/input/?i=sin2x+%2B+4sin+x+%2B+3+%3D+0 i dont think its possible..
anonymous
  • anonymous
i think..tthere is mistake in question..))))
anonymous
  • anonymous
@Lulu212 can u check ur question...))
Mimi_x3
  • Mimi_x3
I think it should be \(sin^2x + 4sinx +3 =0\)
Mimi_x3
  • Mimi_x3
then \(u=sinx\) more reasonable
anonymous
  • anonymous
then it is a quad eq
anonymous
  • anonymous
we can find sinx
Hero
  • Hero
I'm inclined to agree with @Mimi_x3
anonymous
  • anonymous
this question can be solved ............why u guys are worrying????????
anonymous
  • anonymous
it cant be solved just endless ways of writing the equation
anonymous
  • anonymous
what are we solving for? LOL. that equation needs to be written precisely in a way that we all can agree to what it is.
UnkleRhaukus
  • UnkleRhaukus
\[\sin^2x+4\sin x+3=0\] \[u^2-4u+3=0\] \[u=\frac{-(-4)\pm\sqrt{(-4)^2-4\times(1)\times(3)}}{2(1)}\] \[u=2\pm\frac{\sqrt{4}}{2}\]\[u=2\pm1\]\[u=1,3\] \[(1)^2+4(1)+3=0,\qquad\qquad 3^2-4(3)+3=0\]\[8=0,\qquad\qquad\qquad 3^2-4(3)+3=0\]\[\text{false}\qquad\qquad\qquad 9-12+3=0\]\[\qquad\qquad\qquad\qquad0=0\]\[\qquad\qquad\qquad\text{true}\]
anonymous
  • anonymous
the equation toolbar in this thing sucks hairy ______. how do you write it so neatly like that?
UnkleRhaukus
  • UnkleRhaukus
so \(u=\sin(x)=3\) \[x=\arcsin (3)\] ... this question is very confusing \[\text{\[u=\frac{-(-4)\pm\sqrt{(-4)^2-4\times(1)\times(3)}}{2(1)}\]}\]
UnkleRhaukus
  • UnkleRhaukus
oh damn my solution is way off \[\sin^2(\arcsin 3) + 4\sin (\arcsin 3) + 3 = 24≠0\]
UnkleRhaukus
  • UnkleRhaukus
oh \(u^2+4u+3=0\) NOT \(u^2-4u+3=0\)
anonymous
  • anonymous
but this wasnt the problem that was stated lol
UnkleRhaukus
  • UnkleRhaukus
\[u_{1,2}=-2\pm1=-3,-1\]
UnkleRhaukus
  • UnkleRhaukus
\[\sin x=u=-3,-1\] \[x_{1,2}=\arcsin (-1),\quad \arcsin(-3)\] \[x_1=-\frac \pi2\qquad, x_2=\text{some transcendental nonsense} \] hence\[x=-\frac {\pi}2\] CHECKING \[\sin^2x + 4\sin x + 3 = 0\] \[\sin^2\left(-\frac\pi 2\right) + 4\sin \left(-\frac\pi 2\right) + 3 = 0\]\[1+4(-1)+3=0\]\[0=0\]true hence \[\large{x=-\frac {\pi}2}\]is the solution to \[\sin^2x + 4\sin x + 3 = 0\]
UnkleRhaukus
  • UnkleRhaukus
ta-da
Hero
  • Hero
People who post questions need to learn how to use the equation editors to avoid such confusion.
anonymous
  • anonymous
couldn't agree more @Hero
UnkleRhaukus
  • UnkleRhaukus
i think someone needs to write a program that can interpet questions and convert them to \(\LaTeX\) automagically
anonymous
  • anonymous
@lulu212 i am disappoint at this equation
Hero
  • Hero
I imagine that something like that would have to be interactive. It would have to be some kind of AI that would automatically ask the user something like: Did you mean \(\sin(2x)\) or \(\sin^2(x)\)?
anonymous
  • anonymous
beyond OS' capacity :P we can ask Wolfram though. That dude is probably the smartest programmer I've seen alive
Hero
  • Hero
That's because he was reincarnated Einstein
anonymous
  • anonymous
hahaha... I think he was already born when Einstein was still alive
Hero
  • Hero
Well, Einstein's lost twin
anonymous
  • anonymous
this question has like 40 responses all because of a typing error
Hero
  • Hero
We're still assuming that it is a typing error
anonymous
  • anonymous
it is
Hero
  • Hero
There's no such thing as typing errors. Only human errors.
anonymous
  • anonymous
the person who asked for help did not even say anything after the question was posted (TYPOGRAPHICAL ERROR)
UnkleRhaukus
  • UnkleRhaukus
can't we all be einsteins lost twin?
anonymous
  • anonymous
I know that I can't... I have a roach's brain compare to his
anonymous
  • anonymous
same difference hero lol
UnkleRhaukus
  • UnkleRhaukus
twins dont necessarily have the same charistics
anonymous
  • anonymous
oh that's right... I'd be the opposite of his intellect then
UnkleRhaukus
  • UnkleRhaukus
* characteristic
Hero
  • Hero
In one of Einstein's lost journals, he wrote that his brain was removed as a kid. The person handling his brain accidentally dropped in brain in a toilet, but quietly removed it without telling anyone. Once the brain was placed back into Einstein's head, he felt different, like as if he had more 'powers' and 'ability'. We all know what that led to.
UnkleRhaukus
  • UnkleRhaukus
oh my.
anonymous
  • anonymous
where's David Hume?

Looking for something else?

Not the answer you are looking for? Search for more explanations.