anonymous
  • anonymous
An undamped oscillator of mass m and natural frequency Wo moves under the action of an external force F=Fo sin(wt). Starting from the equilibrium position with initial velocity zero. Find the deslocament x(t).
Physics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
is it displacement????
anonymous
  • anonymous
Yes, displacement. Sorry.
anonymous
  • anonymous
|dw:1345989153738:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[F_{total}=ma=m\frac{d^2x}{dt^2}=-kx+F_0\sin(wt)\]
anonymous
  • anonymous
\[\frac{d^2x}{dt^2}-kx/m=F_0\sin(wt)/m\]
anonymous
  • anonymous
From SHM,\[k=w_0^2m\] rewrite sin(wt) as cos(wt-90), x will tend to take the form\[Acos(wt)\]. You just need to find A. You could either use normal DE or assume x is a complex number and turn F_0sinwt into F_0e^iwt
anonymous
  • anonymous
To use the normal method:\[Aw^2\sin(wt)-Amw_0\sin(wt)/m=F_0\sin(wt)\] Rearrange to find A. I assumed that x=Asin(wt) for convenience
anonymous
  • anonymous
That helped me a lot. Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.