Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

(a) Explain your strategy in solving inequalities of the form \( \frac{f(x)}{g(x)} < c. \) (b) Solve \(\left| \frac{x-1}{x+1} \right| <1\).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Your answer is not making any sense.
Because whatever is in absolute value can be positive and negative (you wouldn't know), you have to think about it in both cases. For example, |x| = 4 can mean x=4 or x=-4 because the abs. value turns the number positive. so ((x-1)/(x+1)) < 1 and ((x-1)/(x+1)) > -1 -1 < ((x-1)/(x+1)) < 1
hope that makes sense

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[-1<\frac{ x-1}{ x+1 } <1\]
@ghazi still don't make sense. What is the answer? @Denebel Yes I know. But how do you solved it? Both the denominator and dividend is a function.
@twitter :) multiply both sides by x+1 and solve it
\[(x-1)<(x+1)\]
@ghazi yeah? how do you solved that? I am not impressed with your half work. I bet you are plain wrong though. X on both sides is just going to cancel each other and besides you deleted your first response because it was plain stupid. You are not helping.
hmmm
\[\left| \frac{x-1}{x+1} \right| <1\] \[ \frac{x-1}{x+1} <1\] or \[ \frac{x-1}{x+1} >-1\] you cannot multiply by \(x+1\) because you do not know if it is positive or negative start with \[\frac{x-1}{x+1}-1<0\] solve that one, then \[\frac{x-1}{x+1}+1>0\] solve that one, then take the intersection
\[\frac{x-1}{x+1}-1<0\] \[\frac{-2}{x+1}<0\] \[x>-1\] for the first one
oh this is ancient history nvm
\[\frac{x-1}{x+1}+1>0 \]\[\frac{2x}{x+1}>0\]\[x>0\] Therefore \( x \) is greater than zero. Thanks @satellite73 ! I am your fan now! ;))

Not the answer you are looking for?

Search for more explanations.

Ask your own question