anonymous
  • anonymous
(a) Explain your strategy in solving inequalities of the form \( \frac{f(x)}{g(x)} < c. \) (b) Solve \(\left| \frac{x-1}{x+1} \right| <1\).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Your answer is not making any sense.
anonymous
  • anonymous
Because whatever is in absolute value can be positive and negative (you wouldn't know), you have to think about it in both cases. For example, |x| = 4 can mean x=4 or x=-4 because the abs. value turns the number positive. so ((x-1)/(x+1)) < 1 and ((x-1)/(x+1)) > -1 -1 < ((x-1)/(x+1)) < 1
ghazi
  • ghazi
hope that makes sense

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ghazi
  • ghazi
\[-1<\frac{ x-1}{ x+1 } <1\]
anonymous
  • anonymous
@ghazi still don't make sense. What is the answer? @Denebel Yes I know. But how do you solved it? Both the denominator and dividend is a function.
ghazi
  • ghazi
@twitter :) multiply both sides by x+1 and solve it
ghazi
  • ghazi
\[(x-1)<(x+1)\]
anonymous
  • anonymous
@ghazi yeah? how do you solved that? I am not impressed with your half work. I bet you are plain wrong though. X on both sides is just going to cancel each other and besides you deleted your first response because it was plain stupid. You are not helping.
anonymous
  • anonymous
hmmm
anonymous
  • anonymous
\[\left| \frac{x-1}{x+1} \right| <1\] \[ \frac{x-1}{x+1} <1\] or \[ \frac{x-1}{x+1} >-1\] you cannot multiply by \(x+1\) because you do not know if it is positive or negative start with \[\frac{x-1}{x+1}-1<0\] solve that one, then \[\frac{x-1}{x+1}+1>0\] solve that one, then take the intersection
anonymous
  • anonymous
\[\frac{x-1}{x+1}-1<0\] \[\frac{-2}{x+1}<0\] \[x>-1\] for the first one
anonymous
  • anonymous
oh this is ancient history nvm
anonymous
  • anonymous
\[\frac{x-1}{x+1}+1>0 \]\[\frac{2x}{x+1}>0\]\[x>0\] Therefore \( x \) is greater than zero. Thanks @satellite73 ! I am your fan now! ;))

Looking for something else?

Not the answer you are looking for? Search for more explanations.