tux
  • tux
Prove by induction: http://i.imgur.com/715S5.png
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Proof: For each positive integer \(n\ge2\) , let \(S(n)\) be the statement\[1.2+2.3+...+(n-1)n=\frac{n(n-1)(n+1)}{3}\] Basis step: S(2) is the statement \(1.2=\frac{2.1.3}{3}=2\). Thus \(S(2)\) is true. Inductive step: We suppose that \(S(k)\) is true and prove that \(S(k+1)\) is true. Thus, we assume that \[1.2+2.3+...+(k-1)k=\frac{k(k-1)(k+1)}{3}\] and prove that \[1.2+2.3+...+k(k+1)=\frac{k(k+1)(k+2)}{3}\] what to do now?
anonymous
  • anonymous
@tux make sense?
tux
  • tux
You rewritten sum as \[\sum_{i=1}^{n-1}i(i+1)=\sum_{i=1}^{n}i(i+1)+(n-1)(n-1+1)\] ? And then substituted n=k in induction step Then n=k+1 you got ((k+1)-1)(k+1) k*(k+1)=\[\frac{ k(k+1)(k+2) }{ 3 }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
this is how we got things done by induction We assume that \(S(k)\) is true and we want to prove that \(S(k+1)\) is true.
tux
  • tux
Thank you. Now I can do it alone
anonymous
  • anonymous
yw :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.