anonymous
  • anonymous
If S is any point in the interior of triangle PQR then prove that SQ + SR < PQ + QR.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1345956288365:dw|
anonymous
  • anonymous
someone please help!!
anonymous
  • anonymous
please!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
sorry can u check it plz... i have some doubt on it SQ + SR < PQ + QR or SQ + SR < PQ + PR
anonymous
  • anonymous
sorry its SQ + SR < PQ + PR.
jiteshmeghwal9
  • jiteshmeghwal9
Does it help @pratu043 ??? \[\LARGE{s=90^o+{1 \over 2} \angle a}\]
anonymous
  • anonymous
was wondering if i could use vectors to proof it? or u want basic trigonometries?
anonymous
  • anonymous
the perimeter of tri PQR > the perimeter of tri SQR because S is inside PQR. in other word PQ+QR+PR > SQ+QR+SR take out the positive amount QR from both side PQ+PR > SQ+SR
anonymous
  • anonymous
Thank you @TheMind

Looking for something else?

Not the answer you are looking for? Search for more explanations.