Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

If S is any point in the interior of triangle PQR then prove that SQ + SR < PQ + QR.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1345956288365:dw|
someone please help!!
please!!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

sorry can u check it plz... i have some doubt on it SQ + SR < PQ + QR or SQ + SR < PQ + PR
sorry its SQ + SR < PQ + PR.
Does it help @pratu043 ??? \[\LARGE{s=90^o+{1 \over 2} \angle a}\]
was wondering if i could use vectors to proof it? or u want basic trigonometries?
the perimeter of tri PQR > the perimeter of tri SQR because S is inside PQR. in other word PQ+QR+PR > SQ+QR+SR take out the positive amount QR from both side PQ+PR > SQ+SR
Thank you @TheMind

Not the answer you are looking for?

Search for more explanations.

Ask your own question