shubhamsrg
  • shubhamsrg
integral [ log( sqrt(1+x) + sqrt(1-x) ) dx] from x=0 to 1
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

lgbasallote
  • lgbasallote
\[\huge \int \limits_0^1 \log (\sqrt{1 + x} + \sqrt{1- x})\] ???
anonymous
  • anonymous
yep i think so
shubhamsrg
  • shubhamsrg
yep.. and a dx there,,ofcorse..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ah.. leave the typos.. concentrate on question. lol
hartnn
  • hartnn
simple substitution of x=cos 2t
shubhamsrg
  • shubhamsrg
then our dx = -2sin 2t dt.. dont you think that will create a problem ? altough the sq. roots will be eliminated..
shubhamsrg
  • shubhamsrg
how'd you get that ? what i got was inside the integral (something) + log( cos t + sin t ) sin 2t dt are you missing the log there buddy ?
anonymous
  • anonymous
is that \(\ln\)
shubhamsrg
  • shubhamsrg
yep..ln..
hartnn
  • hartnn
i need to reconsider
anonymous
  • anonymous
man this is interesting
anonymous
  • anonymous
let\[t=\ln(\sqrt{1+x}+\sqrt{1-x})\]
hartnn
  • hartnn
is there a standard formula for: \[\int\limits_{}^{}\ln(1+\sqrt{1-x^2})\] if yes,then this is so simple!
anonymous
  • anonymous
i think there is
hartnn
  • hartnn
\[=(1/2)\int\limits \limits_0^1 \log (\sqrt{1 + x} + \sqrt{1- x})^2 dx\] \[=(1/2)\int\limits \limits_0^1 \log (2+2\sqrt{1-x^2})^2 dx\] \[=(1/2)\int\limits \limits_0^1 \ln 2+\ln (1+\sqrt{1-x^2})^2 dx\]
hartnn
  • hartnn
\[=(1/2)\int\limits\limits\limits \limits_0^1 \ln 2+\int\limits\limits\limits \limits_0^1\ln (1+\sqrt{1-x^2}) dx\]
anonymous
  • anonymous
\[\ln(1+\sqrt{1-x^2})=\text{sech}^{-1}x+\ln x\]this is hard to get o.O
hartnn
  • hartnn
http://www.wolframalpha.com/input/?i=%5Cint%5Climits%5Climits%5Climits+%5Climits_0%5E1%5Cln+%281%2B%5Csqrt%7B1-x%5E2%7D%29+dx&dataset=
anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=%5Cint+%5Cln+%281%2B%5Csqrt%7B1-x%5E2%7D%29+dx
hartnn
  • hartnn
http://www.wolframalpha.com/input/?i=integral+of+ln%281%2Bsqrt%7B1-x%5E2%7D%29&dataset=
hartnn
  • hartnn
lol,i did same exact thing :P
hartnn
  • hartnn
i guess,thats integration by parts........???
hartnn
  • hartnn
taking u=ln(....),v=1
shubhamsrg
  • shubhamsrg
bingo,,got it by parts! @hartnn thanks a lot!
hartnn
  • hartnn
belated welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.