anonymous
  • anonymous
evaluating indefinite integral
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits \frac{x^4 + 1}{x^2 \sqrt{x^4 - 1}}dx\]
UnkleRhaukus
  • UnkleRhaukus
\[u=x^4-1\] \[(u+1)^{1/4}=x\] \[\frac 14(u+1)^{-3/4}\text du=\text dx\] \[\int\limits \frac{u+2}{(u+1)^{2/4} \sqrt{u}}\frac 14(u+1)^{-3/4}\text du\]
UnkleRhaukus
  • UnkleRhaukus
hmm

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I have already tried that substitution and stuck
UnkleRhaukus
  • UnkleRhaukus
maybe there is a trig substitution
Mimi_x3
  • Mimi_x3
\[\int\limits\frac{(x^{2})^{2}+1}{x^{2}\sqrt{(x^{2})^{2}-1}} \] maybe a trig sub..u^2 = tan\theta or u^2 = sin\theta
Mimi_x3
  • Mimi_x3
i mean x^2 = tan\theta or x^2 = sin\theta
anonymous
  • anonymous
this is guessing game...maybe\[x^2=\sec u\]
Mimi_x3
  • Mimi_x3
yeah my bad..but i think x^2 = tan(u) would work as well..
anonymous
  • anonymous
here it is\[\int\limits \frac{\sec^2 u + 1}{2 \sqrt{\sec u}} du\]
anonymous
  • anonymous
I don't know what to do with the sqrt{sec u}
Mimi_x3
  • Mimi_x3
secx = 1/cosx maybe weirstrass substitution?
Mimi_x3
  • Mimi_x3
wait..wont work http://www.wolframalpha.com/input/?i=integrate+sqrt%28secx%29
anonymous
  • anonymous
there must be a tricky substitution
cruffo
  • cruffo
Have you tried splitting the integral up like this: ?
1 Attachment
anonymous
  • anonymous
it won't work... http://www.wolframalpha.com/input/?i=integrate+%28x^2%29%2F%28sqrt%28x^4+-1%29%29+dx
Mimi_x3
  • Mimi_x3
then what about this \[\int\limits\frac{(secu)^{2}+1}{(secu)^{2}\sqrt{(secu)^{2}-1}} *\frac{tanusecu}{2\sqrt{secu}} \]? its not going to look nice tho
anonymous
  • anonymous
\[\int\limits \frac{\sec^2 u+1}{2\sqrt{\sec u}} du\]
Mimi_x3
  • Mimi_x3
hmm..this is hard..would integration by parts work?
anonymous
  • anonymous
haven't tried that, but I doubt it will work
amistre64
  • amistre64
\[sec=\sqrt{tan^2+1}\]\[sec^2=tan^2+1\] \[\int\limits \frac{\tan^2 u+2}{2tan^2u+2} du\] or am i missing something?
anonymous
  • anonymous
my last hope is x=e^t
Mimi_x3
  • Mimi_x3
x=e^t? i might sound stupid; but where did e^t come from?
amistre64
  • amistre64
i missed something :)\[x^{1/4}\ne x\]
anonymous
  • anonymous
well maybe that will lead us to some sinh and cosh
anonymous
  • anonymous
yeah x=e^t works
anonymous
  • anonymous
x=e^t dx=e^t dt\[\int \frac{e^{4t} + 1}{e^{2t} \sqrt{e^{4t} - 1}}e^t\text{d}t=\int \frac{e^{2t} + e^{-2t}}{ \sqrt{e^{2t} - e^{-2t}}}\text{d}t=\int \frac{2\cosh t}{\sqrt{\sinh t}} \text{d}t\]
anonymous
  • anonymous
OOoopS typo again\[\int \frac{2\cosh 2t}{\sqrt{2\sinh 2t}} \text{d}t\]
anonymous
  • anonymous
nice, it works!
anonymous
  • anonymous
:)
anonymous
  • anonymous
now I can rest peacefully lol
anonymous
  • anonymous
ty all for helping :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.