anonymous
  • anonymous
Show that the limit as x->0 of 3x^2/(\sin(4x^2))=3/4. Thanks. (Without l'Hospital's)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[Lim(x \rightarrow 0)\frac{3x^2}{(\sin(4x^2)}\]
anonymous
  • anonymous
Use\[Lim (x \rightarrow 0) \frac{sinx}{x}=1\rightarrow sinx=x\]
anonymous
  • anonymous
Why is this true? It's obvious if you graph it http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJzaW4oeCkiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d sinx=x when you move closer to the origin.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes, but, remember that \[nx\] is not of the form \[nx^2\] so the equivalent does not necessarily apply. :( Now, were we to show that \[\sin nx^2 \sim x^2, x \to 0\] that would make more sense... How would we ago about doing that, though?
experimentX
  • experimentX
\[ \lim_{x \rightarrow 0}\frac{4x^2}{\sin(4x^2)} \times {3 \over 4} \\ \lim_{4x^2 \rightarrow 0}\frac{4x^2}{\sin(4x^2)} \times {3 \over 4} = {3 \over 4}\]
experimentX
  • experimentX
\[ \lim_{4x^2 \rightarrow 0}\frac{1}{\frac{\sin(4x^2)}{4x^2}} \times {3 \over 4} = {3 \over 4} \]
experimentX
  • experimentX
nice piece of app http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJzaW4oeCkiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi05LjEyIiwiMy44Nzk5OTk5OTk5OTk5OTg2IiwiLTEuOTQwMDAwMDAwMDAwMDAwNCIsIjYuMDYwMDAwMDAwMDAwMDAwNSJdfV0-
anonymous
  • anonymous
Or\[\lim(x \rightarrow 0) \frac{3x^2}{\sin(4x^2)}=\lim(x \rightarrow 0) \frac{3x^2}{4x^2}=\lim(x \rightarrow 0) \frac{3}{4}\]
anonymous
  • anonymous
Ahh, yes, again, although I don't know how to prove they're asymptotically equal, I should be able to solve it, now, thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.